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Abstract. Oscillations in quantum phase about a mean value of π, observed across micropores connecting
two 3He−B baths, are explained in a Ginzburg-Landau phenomenology. The dynamics arises from the
Josephson phase relation,the interbath continuity equation, and helium boundary conditions. The pores
are shown to act as Josephson tunnel junctions, and the dynamic variables are the inter bath phase
difference and fractional difference in superfluid density at micropores. The system maps onto a non-rigid,
momentum-shortened pendulum, with inverted-orientation oscillations about a vertical tilt angle φ = π,
and other modes are predicted.

PACS. 03.75.Fi Phase coherent atomic ensembles; quantum condensation phenomena – 67.57.-z Superfluid
phase of liquid 3He – 74.50.+r Proximity effects, weak links, tunneling phenomena, and Josephson effects

The search for Josephson-like weak-link effects in super-
fluids has a long history [1–7]. In order to see Josephson-
like phenomena, the characteristic length-scale of the
weak-link should be comparable to the temperature-
dependent coherence length ξ(T ). Thus a candidate super-
fluid is 3He−B , with a relatively large zero-temperature
coherence length ξ(0) ∼ 65 nm [8]. In fact the os-
cillatory displacement of flexible membranes walling
off 3He−B baths connected by micropores, induces a
Josephson-like, periodic current-phase relation [3–7]. Re-
cently, Davis, Packard, and collaborators have observed
a remarkable phenomenon: metastable oscillations of
3He−B with an average phase-difference of π across the
weak link [6]. The explanation of these, and other com-
plex tunneling oscillations is of considerable general in-
terest, since they provide examples of novel macroscopic
quantum effects.

Bose-Einstein condensate (BEC) tunneling of neutral
atoms between double-well traps has been predicted [9] to
support π-state oscillations, and other modes. The cou-
pling between theN1,2 condensate atoms in wells 1, 2, with
phase difference φ is −

√
N1N2cosφ ∼ −(1 − z2)1/2cosφ

where z = (N1−N2)/(N1+N2) is the fractional population
imbalance. The coupling energy corresponds to [10] a non-
rigid pendulum [9,11] of tilt angle φ, momentum pφ = z

and length (1−pφ2)1/2. The non-rigid pendulum is short-
est when moving fastest, and can thus support inverted-
orientation oscillations about φ = π (concave downwards).
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The BEC mapping onto a non-rigid pendulum dynamics
is the generic consequence of wave function phase factors
and the two-state nature of the tunneling: properties that
it shares with the 3He−B system. However, the BEC dy-
namics cannot be naively taken over [12]: features of the
constrained helium wavefunction in a pore geometry, must
play a role.

In this paper we show that the helium wave func-
tion boundary conditions in a pore geometry, in conjunc-
tion with the Josephson phase relation and the continu-
ity equation, determine the 3He−B tunneling dynamics,
that is indeed similar to non-rigid pendulum dynamics,
but with a (momentum-dependent) torsion-bar [13] due to
hydrodynamic flows outside the pore [4]. Thus dynamical
π-states of temperature-dependent frequency can occur,
with a rich variety of other modes.

The wavefunction is depressed by the boundary con-
ditions (bc) inside, and just outside a pore length, that is
shown to act as a tunneling barrier, for sufficiently nar-
row pores. Displacements of the flexible membrane wall
are proportional to a fractional shift z of the depressed
wavefunction, that acts as an oscillating “Josephson pis-
ton”: it conveys pairs through the tunneling region at a
rate (∼ ż) determined by the (sine of) the phase differ-
ence φJ across the pore. We now derive the (quasiequilib-
rium) 3He−B dynamics.

Free Energy: The 3He−B order parameter [8] can
be written as Φµ,i(r) = Ψ(r)Bµ,i(n(r)),where Ψ(r) =
|Ψ(r)|eiφ(r) and |Ψ(r)| is proportional to the gap, vary-
ing on a coherence length ξ(T ). Here B(n(r)) is a ten-
sorial factor, with “n(r)” representing axis rotations,
varying over a textural healing length ltex,≥ 5 µm [8].



432 The European Physical Journal B

J

L

L

A  A

X ηη

δ δJ0

b

L

L

δJ0δ

J

ψ

x

ξξ

J0

x

(a) (b)

~~

Fig. 1. Schematic diagrams (not to scale) of: (a) Effective pore/bath geometry, showing geometric pore length LJ0 and pore
(bath) area AJ0 (A). Dashed line shows the rest position of the “Josephson piston” of length LJ = LJ0 + 2δ. The piston shift is
η and the membrane displacement is X(∝ η). (b) Equilibrium wavefunction ψ(x) versus x.

The Ginzburg-Landau (GL) free energy is a scalar, with
traces over the tensorial products: F ({Φ(r),∇Φ(r)}) =
F0({Φ(r)})+Fgrad({∇Φ(r)}) [8]. Unlike the superconduc-
tor bc of vanishing normal gradients of the gap, we must
use here “helium” bc, with the order parameter vanishing
at the walls, Φµ,i(r) → 0 . This bc, supported by experi-
ment, has been used elsewhere [14], and is particularly rel-
evant in the system regime [5–7] of pore scales ∼ ξ,� ltex.
The bc is enforced by Ψ → 0 over length scales ∼ ξ, and
the contributions to Fgrad from |∇Ψ | contributions will
dominate those from |∇B| ∼ |∇n| [15]. The n(r) textural
variables can be set equal to their fixed, bath value, [8].
Thus Fgrad → Fgrad({∇Ψ(r)}), and the effective free en-
ergy describing the pore region is

F =
∫

d3r

[
~2

2m∗
|∇Ψ(r)|2 + aε|Ψ |2 +

b

2
|Ψ |4

]
(1)

where a, b,m∗ are GL coefficients (constants in space and
time) absorbing tensorial-factor traces of order unity; and
ε = (T/Tc − 1), where Tc is the transition temperature.

The experimental geometry [5] is a superfluid of to-
tal mass density ρ in a pillbox of cross-section A, and
length L, closed at one end by a flexible membrane (of
spring constant C) and at the other end by a perforated
wall with NJ = 65 × 65 pores of geometric cross-section
AJ0 and length LJ0. The pillbox bath is immersed in a
larger superfluid bath. (See Fig. 1). We consider a single
pore. The x coordinate is along the pore axis, and the
system cross-section A(x) varies between A and AJ0.

To obtain an effectively 1D model, we average over
the transverse cross-section of the system, and scale in
the equilibrium wave function |Ψ0| =(a|ε|/b)1/2 where the
effective superfluid mass density is ρs(T ) = m∗|Ψ0|2 ∼ |ε|.
Thus the 1D gap wavefunction is ψ(x) = [Ψ(r)]/|Ψ0|,where
[...] ≡

∫
d2r(...)/A(x). With ξ(T )2 = ~2/(2m∗a|ε|), the

free energy from equation (1) is:

F ' ε0
∫

dxA(x)
[
ξ2|∂xψ|2 + (U − 1)|ψ|2 +

1
2
|ψ|4

]
(2)

where the energy density is ε0 ≡ |Ψ0|2a|ε| ∼ |ε|2.
The averaged transverse gradients U(x) = [|∂yΨ(r)|2 +
|∂zΨ(r)|2]/|[Ψ(r)]|2 are ∼ ξ2/AJ0 in the pore region, and
negligible,∼ξ2/A in the bulk. Thus U(x) is an effective en-
ergy barrier, arising from the bc. We set U(x) = γ2ξ2/AJ0

in an effective barrier length |x| < LJ/2, and zero out-
side it. The barrier length LJ is greater than the geomet-
ric pore length LJ0, as the wave function depression (and
large transverse gradients) will persist by continuity, for a
small distance or “overhang”, outside the pore openings,
of size δ = (LJ − LJ0)/2 as shown in Figure 1. We treat
γ, > 1, as a fitting parameter, and consider e−KLJ � 1 as
small.

Wavefunctions: The barrier region solutions of the (lin-
earized) GL equation derived from equation (2) are e±Kx,
with a real decay wavevector K ≡

√
(γ2/AJ0)− ξ−2, for√

AJ0 < γξ.( An estimate, for square pores, is γ =
√

2π.)
With a phase difference φJ ≡ φ(x = LJ/2)−φ(x = −LJ/2)
across the junction, the (dimensionless) pore wavefunc-
tions are in a form [4] generalized to

ψ(x) = [ a− e−iφJ/2sinhK((LJ/2)− x) +

a+ eiφJ/2sinhK((LJ/2) + x)]/sinhKLJ, (3)

where coefficients a± here match on to bath wave func-
tions, rather than plane waves [4]. Substitution into equa-
tion (2) yields a leading-order, |x| ≤ LJ/2 contribution

FJ = −EJ

√
(a2

+a
2
−)/a4

0 cosφJ, (4)
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neglecting O(e−2KLJ cos 2φJ) corrections. The Josephson
energy is EJ ≡ 2AJ0Kξ

2ε0a
2
0f(T )/sinhKLJ, and f(T ) is

a possible renormalization factor discussed later. We now
estimate a± amplitudes and their dependence on interbath
pair transfers.

Equilibrium wave-functions deep in the baths 1, 2 are
rigid, as bulk 3He−B is incompressible. Solutions of the
nonlinear GL equation from equation (1) are hyperbolic
tangents, flat in the bulk and falling to zero with slope
1/
√

2ξ at walls [1]. We take the averaged bath wavefunc-
tion as ψ1,2(x) = e∓iφJ/2g(∓x − LJ0/2), where g(x) =
tanh(x/

√
2ξ). At x = ∓LJ/2, continuity with equation (3)

yields equal equilibrium pore-amplitudes a− = a+ ≡ a0,
and a0 = g0, where the bath wavefunction at the barrier
edge is g0 ≡ g(δ). See Figure 1. Slope-matching determines
the (weakly T -dependent) overhang δ as sinh(

√
2δ/ξ) =√

2/Kξ coth((K(LJ0 + 2δ)/2). For long narrow pores,
g0 ∼ δ/

√
2ξ, and the overhang δ ' 1/K ∼ A

1/2
J0 vanishes,

as pores close, AJ0 → 0.

Slowly oscillating and small (X(t)� ξ) displacements
of the far-off flexible membrane will be transmitted by the
rigid bulk, to induce shifts by η(∝ X) of the wavefunction
near the pores. Since η will be related to the tunneling
through the pores, we term the movable region of length
LJ in Figure 1, a “Josephson piston”. The bulk wavefunc-
tions at x = ∓LJ/2 + η then match onto the (shifted)
piston equation (3), yielding a±. For small η, defining
z ≡ 2η/δ as a fractional piston-overhang shift, we can ex-

pand as
√
a2

+a
2
−/a

2
0 ∼
√

1− z2 to obtain equation (4) as
FJ = FJ(φ, z). (Additional wavefunction stiffness terms,
FJ ∼ +z2 make z = 0 the piston rest position; these are
dominated by membrane stiffness terms, given later).

The shift of the interfaces between the Josephson re-
gion and the bath to x = − 1

2LJ + η, x = 1
2LJ + η means

that there are increases/decreases in the number of atoms
in the two tunneling overhang regions. Note that z can be
interpreted as a fractional imbalance [9] of the overhang
volumes 2AJ0δ, and is not a fraction of the total Cooper
pairs [12].

Clearly, the incremental number change dn1,2 in each
bath will be the number density at the interface times the
incremental shift dη. The change in tunneling population
dn = 1

2 (dn1−dn2) from the overhangs on the two sides is
then [16] dn = −(ρAJ0g

2
0δ/2m3)dz where m3 is the helium

atom mass. The piston displacements induce a reactive
velocity component [16] of the membrane Ẋ ∝ 1

2 (g2
0δ)ż

proportional to the tunneling current.

Current Equation: The tunneling current (piston ve-
locity) equation for ż is provided by the continuity equa-
tion ρ̇(r) = ∇ · J(r) where J is the total mass current
density. Integrating over baths 1, 2 (outside the piston re-
gions) and using Gausses theorem, m3ṅ = 1

2AJ0([Jx(x =
−LJ/2)] + [Jx(x = LJ/2)]). Assuming no normal fluid
flows through the narrow pores, and with superfluid
mass-current density [Jx(x)] = ρs

~
m∗ Im(ψ?∂ψ/∂x), equa-

tion (3) yields:

~
2KJ

dz
dt

= −
√

1− z2 sinφJ = − ∂H
∂φJ
· (5)

where H and KJ are defined below.The physical picture
is of phases at NJ pore openings in each bath locked to-
gether, and with a common difference between baths, so
that the 4 000 Josephson pistons vibrate in unison.

Phase Equation: The Josephson relation for φ = φ2 −
φ1, the total interbath phase difference, is φ̇ = ∆µ/~ and
the chemical potential difference from the tunneling trans-
fer of n atoms will contribute as ∆µ ' −∂FJ/∂n. (The
bulk contributions from the incompressible, constant-
density fluid in the baths, clearly cancel out of the differ-
ence ∆µ.) Work done by a fixed [7] external pressure Pext,
and by the Josephson piston, pushing against the mem-
brane, of spring constant C, can also be included [16].
Thus

~
2KJ

dφ
dt

= Λz +
Pext

PJ
+

z√
1− z2

cosφJ =
∂H

∂z
; (6a)

H =
1
2
Λz2 +

Pextz

PJ
−
√

1− z2 cosφJ, (6b)

where PJ ≡ ρKJ/m3 is a pressure scale. The frequency
scale is 2KJ/~ ≡ (ρs/ρ)(2~K/m∗δ)f(T )/sinh(KLJ) ∼
|ε|f(T ); and Λ ≡ (Cg2

0δ)/(2APJ) ∼ C/f(T ) is a (dimen-
sionless) membrane stiffness parameter.

Note that φ and z are not canonically con-
jugate, as φ 6= φJ due to hydrodynamic ef-
fects [4]. The hydrodynamic bath-pore superflow
I = (Ah/AJ0)AJ0ρs(~/m∗)(φh/Lh) is driven by a phase
gradient φh/Lh over a hydrodynamic length Lh in each
bath. (Here Ah/AJ0 is a bath-pore “transmission proba-
bility”). The same current I = IJ

√
1− z2 sinφJ, tunnels

through the pore, where the Josephson critical (mass)
current is IJ = EJ2m3/~ ∼ |ε|2f(T ). With total phase
change φ = 2φh + φJ, we have a nonlinear relation [4]
generalized to φ = φ(φJ, z):

φ = φJ + α
√

1− z2 sinφJ, (7)

where α ≡ (2AJ0
Ah

)(KLhg
2
0f(T ))/sinh(KLJ) ∼ |ε|f(T ).

This corresponds to a torsion-bar as in the inductive SJJ
case [10,13], but now, momentum-dependent.

The temperature-dependence of Λ(T ) is essentially
that of f(T ). Experimentally, the critical current goes as
∼ (1 − T/Tca)2, appearing to vanish before transition, at
a Tca = 0.91Tc [6]. Since IJ ∼ ε2f(T ), this “experimen-
tal” form f(T ) = (1−T/Tca)2/ε2, could be used. Or, f(T )
could be attributed to thermal phase fluctuations [17]. We
estimate it, in this picture [18].

Equations (5–7) constitute the model equations for the
3He−B system, in terms of the mutually linked dynamics
of the fractional Josephson piston shift η/δ ≡ z/2 and the
phase difference φJ across it. They can be solved in terms
of elliptic functions [16] just as in the α = 0 “BEC-like”
case [9]. They correspond to a non-rigid pendulum of tilt
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angle φJ, and angular momentum z, with a momentum-
dependent torsion bar. The torsion-bar [13] induces hys-
teretic effects for α ≥ 1. We focus on α < 1 where the
modes are essentially as for α = 0 , with the equations
predicting five distinct undriven modes (instead of the
two of the rigid pendulum). The modes can be visual-
ized by plotting [11] the locus of the pendulum coordi-
nates (

√
1− z2 sinφJ,−

√
1− z2 cosφJ). With a dc drive

Pext there is an ac Josephson oscillation at a frequency
ωac = 2m3Pext/ρ~; with added resonant ac drives, there
are Shapiro-like dc current spikes [9,16]. “Zero-state” os-
cillations of the pendulum can occur, with time averaged
〈φ〉 = 0 = 〈z〉. The pendulum, once excited, can rotate
freely, with a running phase, and a “self-trapped” piston-
shift/membrane-displacement ∼ 〈z〉 6= 0.

Since the non-rigid pendulum is shortest, when moving
fastest, it can execute small “inverted” oscillations about
an average value of 〈φ〉 = π. These Λ . 1, “π-state oscilla-
tions”, with 〈z〉 = 0, and are dynamically metastable, with
the momentum-shortened pendulum “digging a well for it-
self” by its motion. Finally, there are two types of Λ > 1,
“π-state rotations” with self-trapped 〈z〉 6= 0 and 〈φ〉 = π,
(on either side of a fixed point φ = π, z =

√
1− Λ−2).

These correspond to the non-rigid pendulum executing
closed-loop trajectories, floating above the point of sup-
port [9,11]. Damping of π-state oscillations through the
non-rigid pendulum velocity φ̇ , or the momentum z, be-
have quite differently. While the former [11] drives the sys-
tem to rest at φJ = 0, the latter [16] damps it to φJ = π.

We use values [6] LJ0 = 0.5 × 10−5 cm, AJ0 =
10−10 cm2, ρ = 0.08 g/cm3, m∗ ' 2m3 = 10−23 g, NJ =
4225, ξ(0) = 65 nm, A = 0.7 cm2, C = 106 dynes/cm,
Tc = 0.91 mK, and a purely illustrative parameter γ ' 23.
Then δ ' 90 Å and 2KJ(0)/~ ' 400 Hz, (IJ(0)/m3) '
3.2× 106 atoms/sec, corresponding to a Josephson energy
per pore EJ(0) ' 0.02 kBTc. We find Λ(0) ' 0.9;PJ '
0.35 mPa; and α(0) ' 0.5.

The results of our model are shown in Figure 2. The di-
mensionless membrane displacement versus dimensionless
time (t2KJ/~→ t) is shown for zero- and π-states. The in-
sets show the temperature-dependent frequencies and crit-
ical currents. These include: i) zero-state oscillations, with
harmonic frequencies ω0(T ) = [(1 +Λ)/(1 + α)]

1
2 (2KJ/~)

that vary from kHz, to zero at Tc. ii) π-state oscilla-
tions, with smaller amplitudes and frequencies ωπ(T ) =
[(1−Λ)/(1−α)]1/2(2KJ/~) < ω0(T ), that vanish on warm-
ing, when Λ(T ) crosses unity, well before Tc. iii) A critical
current [19] (. 20 picogm/s) goes as ε2, appearing to van-
ish before Tc. iv) With a phase angle defined as the time-
integrated membrane displacement [6], the current-phase
relations (not shown) have same-sign, positive slopes in
the zero- and π-states.

Our model (with a single chosen parameter γ that es-
timates the rapid wavefunction variation inside the pore),
reproduces many observed features and magnitudes. In
experiments, oscillations about an average 〈φ〉 = 0 ex-
ist below Tc and have a typical angular frequency scale
of hundreds of hertz, while oscillations about 〈φ〉 = π
appear only on cooling well below Tc and are lower in
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Fig. 2. Dimensionless z(t) (proportional to membrane dis-
placement) versus dimensionless time for |ε| = 1, and param-
eters as in text. π-state oscillations (early times); are kicked
out to zero phase oscillations (later times). Left inset: Zero-
state (π-state) angular frequencies ω0(T ) (ωπ(T )) defined in
text, versus temperature. Right inset: Characteristic current
Ic ∝ IJ(T ) the Josephson critical current, as defined in text,
versus temperature.

frequency [6]. The scale for the pressure-drive in the
ac Josephson effect is millipascals [5]. The maximum
mass-transport current per pore Ic(T ) is of order ten
picograms/sec and vanishes well before Tc [5,6]. These
values and behaviours can be compared with Figure 2
and the numerical estimates of the text. Our model also
predicts self-trapped π-states with ωπ

tr = [(Λ2 − 1)/(1−
α/Λ)]

1
2 (2KJ/~), that have not yet been reported.

Further work could include experimental investiga-
tions of predicted intermode transitions with frequen-
cies dipping to zero, as Λ(T ) or z(0), φ(0) are varied
through critical values [9,16]; and a search for self-trapped
π-states.

π states have been related to a static metastable mini-
mum induced by spin-textures in the baths [20]. This could
dress our dynamic π states from oscillations of the den-
sity depression at pores, producing fine structure in the
oscillation modes. In fact, bistability between two types of
π oscillations has been reported [21]. The first discussion
about π-states and half-flux quantization, in connection
with d-wave Cooper pairing, was given in the context of
high Tc superconductors in [22].

In conclusion, we have modelled the dynamics of
3He−B baths closed by flexible walls, and connected by
micropores. The dynamic equations arise from helium
boundary conditions, the continuity equation, and the
Josephson phase relation. The dynamical variables are the
phase difference, and the shift of the pore wave-function
overhang, beyond the geometric pore length. The sys-
tem maps on to a non-rigid momentum-shortened pen-
dulum dynamics. The π-phase oscillations observed in
3He−B have features similar to those predicted by the
model. Other tunneling modes are predicted.



A. Smerzi et al.: Phase oscillations in superfluid 3He−B weak links 435

It is a pleasure to thank J.C. Davies, R.E. Packard, E. Granato,
M. Mehta, R. Simmonds and S. Vitale for useful conversations.
We thank R.E. Packard for providing unpublished data. This
work was partly supported by the Cofinanziamento MURST
and by the NSF Grant PHY94-15583.

References

1. D. Tilley, J. Tilley, Superfluidity and Superconductivity
(Adam Hilger, Bristol and New York, 1990).

2. P.W. Anderson, Rev. Mod. Phys. 38, 298 (1966).
3. O. Avenel, E. Varoquaux, Phys. Rev. Lett. 55, 2704

(1985); Phys. Rev. Lett. 60, 416, (1988).
4. E. Varoquaux, O. Avenel, G. Ihas, R. Salmelin, Physica B

178, 309 (1990).
5. S. V. Pereverzev, A. Loshak, S. Backhaus, J.C. Davis, R.E.

Packard, Nature 388, 449 (1997).
6. S. Backhaus, et al. Nature 392, 687 (1998); Science 278,

1435 (1998)
7. R.W. Simmonds, et al. Phys. Rev. Lett. 81, 1247 (1998).
8. D. Vollhardt, P. Wolfle, Chap. 7, The Superfluid Phases of

Helium-3 (Taylor and Francis, London, 1990).
9. a) A. Smerzi, S. Fantoni, S. Giovannazzi, S.R. Shenoy,

Phys. Rev. Lett. 79, 4950 (1997); b) S. Raghavan, A.
Smerzi, S. Fantoni, S.R. Shenoy, Phys. Rev. A 59, 620
(1999).

10. The superconductor Josephson junction (SJJ), by con-
trast, corresponds to a rigid pendulum with (charged)
Cooper pair imbalances suppressed by the external circuit/
Coulombic energy costs, as noted in [9].

11. I. Marino et al., Phys. Rev. A 60, 1 (1999).

12. A direct carryover of our BEC dynamics (as done e.g.
by N. Hatekenaka, J. Phys. Soc. Jpn 67, 3672 (1998)) is
clearly unphysical: with N1,2 ∼ 1023 Cooper pairs, and
N1 −N2 ≤ 1014 pairs transferred in a cycle, the fractional
Cooper pair imbalance z ≤ 10−9 is quite negligible. z must
correspond to some other fraction.

13. T.A. Fulton, in Superconductor Applications, edited by B.
Schwarz, S. Foner (Plenum, 1976).

14. S. Ullah, A.L. Fetter, Phys. Rev. B 39, 4186 (1989).
15. Textural variation work focusses on the opposite regime of

scales ∼ ltex, with the gap set equal to a constant.
16. S. Raghavan, A. Smerzi, S. Fantoni, S.R. Shenoy,

unpublished.
17. E. Granato, private communication.
18. A Gaussian “spin-wave” average of phase factors with a

coupling energy proportional to NJEJ ∼ |ε|2 yields an esti-

mate of f(T ) ∼ e−(T/Tc)(ε1/ε)
2
, and typically, ε1 ∼ 0.2. The

singular flattening of this f(T ) at T = Tc makes it seem
to vanish at a “Tca”< Tc. The stiffness Λ(T ) = Λ(0)/f(T )
diverges at Tc.

19. If the measured signal in the Ẋ membrane velocity is pre-
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